Optimizing Keyword Spotting Classifier based on
Tiny Machine Learning for Low-Power
Embedded Devices

Patrik Medur*, Mart Lubbers’, Goran Mauga**
* University of Rijeka/Faculty of Engineering, Rijeka, Croatia
 Radboud University/Institute for Computing and Information Sciences, Nijmegen, The Netherlands
¥ University of Rijeka/Center for Artificial Intelligence and Cybersecurity, Rijeka, Croatia
corresponding_author: goran.mausa@uniri.hr

Abstract—Keyword Spotting (KWS) is essential for en-
abling voice recognition in smart home systems and although
deploying reliable and energy-efficient models on low-power
embedded devices remains a challenge, tiny machine learning
offers a promising solution. In this paper, raw audio data from
Google’s Speech Commands Dataset v0.02 is used to develop
and evaluate neural network architectures optimized for
KWS based on Mel-frequency cepstral coefficients (MFCC).
The audio signals are formatted as a compact 2D matrix
of time-frequency features, making it ideal for convolutional
neural networks (CNNs). Ten networks are trained with
10-fold cross-validation, fine-tuned on speaker-specific data
and, by using post-training quantization, converted from
TensorFlow (TF) to TensorFlow Lite (LiteRT) format for de-
ployment on microcontrollers. The trade-offs between model
size, performance and energy efficiency are analyzed, and
the results show that LiteRT models considerably reduce the
energy consumption, with energy savings ranging from 1-4 %
for smaller capacity models to 99.73% for larger ones, while
maintaining performance similar to TF models. Furthermore,
fine-tuning models of greater capacity slightly improves their
accuracy (0.51%) and energy efficiency (1.75%), whereas
smaller models are unaffected by fine-tuning. This study lays
the foundation for the integration of KWS models based
on tiny machine learning into microcontrollers for real-time
applications.

Keywords—Keyword spotting, Tiny machine learning, Ten-
sorFlow lite, Mel-frequency cepstral coefficients

I. INTRODUCTION

Voice recognition has become an essential component
of modern smart home systems, enabling users to control
devices, access information, and automate tasks using sim-
ple voice commands. However, implementing reliable and
energy-efficient voice recognition on low-power embedded
systems remains challenging. Traditional voice recognition
systems often rely on computationally intensive models
that are not feasible for resource-constrained environments,
especially in battery-powered devices [1].

Voice recognition systems are commonly split into two
phases to optimize energy efficiency and use of compu-
tational resources. The first stage involves a lightweight
Keyword Spotting (KWS) model deployed directly on the
edge device, such as a microcontroller [2]. This model,
which remains continuously operational, is tasked with
identifying specific keywords while keeping power usage at

a low level. Once a keyword is identified, the process tran-
sitions to the second phase, employing a more advanced
and computationally demanding speech recognition system
to interpret the command, utilizing either a cloud server or
a more potent local device. This two-tiered approach bal-
ances low power usage with the ability to handle complex
tasks, ensuring both efficiency and responsiveness.

The primary objective of this paper is to develop and
optimize neural network-based audio keyword detection
models that run efficiently on embedded systems with
minimal energy usage. By carefully designing and eval-
uating different neural network architectures, the aim is to
strike a balance between accuracy, model size, and energy
efficiency. Given the constraints of embedded platforms,
achieving reliable keyword recognition performance while
minimizing power consumption is a key challenge.

Several studies explored the challenges and solutions
for implementing KWS systems on low-power embedded
devices. A study by Cioflan et al. [3], introduced on-device
domain adaptation techniques, enabling KWS models to
adapt to previously unseen environments. This approach
demonstrates an improved accuracy, highlighting the po-
tential for robust performance in real-world scenarios. Sim-
ilarly, Bernal-Ruiz et al. [4], evaluated KWS prototypes in
embedded systems, concluding that although these systems
performed well with specific speakers, further optimization
is necessary to enhance performance across a broader range
of users. J. Wang and S. Li [5], emphasized the challenges
of optimizing models for deployment on low-power edge
microcontrollers. Their study underlined the critical role of
techniques such as pruning and quantization in achieving
good performance while maintaining the resource effi-
ciency required for embedded environments.

This paper outlines the methodology for keyword Spot-
ting (KWS), detailing dataset selection and preprocessing
for model training. Next, we describe the neural network
architectures designed for KWS, focusing on trade-offs
between accuracy, model size, and efficiency. Finally,
a case study evaluates model performance, emphasizing
their suitability for deployment on low-power embedded
devices.



II. METHODOLOGY
A. Keyword Spotting System

KWS plays a critical role in enabling seamless human-
computer interaction. At its core, this system is designed to
detect specific predefined words or phrases, often referred
to as trigger words, within an audio stream. For exam-
ple, phrases like “hey google” or “Alexa” activate virtual
assistants, setting the stage for further interaction [6], [7].

KWS operates by analyzing incoming audio data, typ-
ically represented as a sequence of features derived from
raw waveforms, such as Mel-frequency cepstral coeffi-
cients (MFCC) [8] or spectrograms. These visual rep-
resentations of audio data allow deep learning models,
particularly convolutional neural networks (CNN), to train
more effectively and better learn patterns corresponding to
specific keywords [9]. At the end of the KWS pipeline,
there is a light-weight classifier which should be able to
detect each keyword (Fig. 1).

In real-world scenarios, KWS systems must operate in
real-time, often on low-power devices like embedded sys-
tems or mobile processors [10]. This imposes constraints
on both computational resources and memory. Techniques
such as model quantization, pruning, and lightweight ar-
chitectures (e.g., MobileNet or TinyML models) [11] are
commonly employed to optimize performance.

B. Classifier

To evaluate KWS architectures, we develop a series of
10 CNN models. Each model processes the same input
size of 13 x 50 matrix float32 data, representing the
MFCC:s of a 1s audio segment. This input is first expanded
to 13 x 50 x 1 to match the dimensional requirements
of CNNs. The models are structured with varying levels
of complexity, with each subsequent model introducing
additional layers or more sophisticated configurations. All
models include fundamental components such as 2D con-
volution layers, max pooling, and a flattening layer to
transition from feature extraction to the final classification
stage. In some models, there is a dropout layer used for
regularization. The number of convolutional layers, filter
sizes, and pooling operations progressively increases across
the models, allowing for more intricate feature extraction
in the bigger architectures.

By incrementally increasing complexity, this approach
provides insight into the trade-offs between model size,
accuracy, and computational demands. While simpler mod-
els are more efficient and lightweight, the more complex
models are designed to capture higher-level features, poten-
tially leading to improved accuracy. This systematic scaling
enables a comprehensive evaluation of how architectural
depth and layer configuration impact performance in the
context of KWS tasks.

In the following sections, we present our TensorFlow
(TF) models alongside their lightweight counterparts, Ten-
sorFlow Lite (LiteRT) models, and conduct a compara-
tive analysis of their performance metrics. LiteRT is a

lightweight framework designed for mobile and embed-
ded systems, enabling the efficient execution of machine
learning models on constrained hardware. Furthermore, we
examine the relationship between model size and accuracy,
highlighting the trade-offs and advantages of quantization
in creating compact yet efficient models.

C. Dataset

The dataset used for training and testing is Google’s
Speech Commands Dataset v0.02 [12]. Designed specifi-
cally for KWS tasks, this dataset provides a diverse and
standardized collection of audio samples that represent
common spoken commands. It serves as a benchmark
for developing and evaluating machine learning models
aimed at detecting specific keywords in real-time audio
streams. This version of the dataset was released on 11
April 2018, and includes 105829 audio files organized
into 36 directories. Each of 35 directories represents a
specific spoken command (e.g., "stop", "yes", "no", "up",
"down"), with most speakers repeating each word up to five
times. An additional directory labeled "background noise"
contains non-verbal audio samples.

Each audio file is labeled based on its directory name
and contains a waveform represented by 16 000 samples
(corresponding to 1s of audio at a 16 kHz sampling rate).
The amplitude of the waveform is normalized to fall
within the range of [—1,1]. The metadata for each audio
file includes the speaker ID and the utterance number.
The waveform data for the spoken command ‘“zero” is
illustrated in Fig. 1, appearing as the first image in the
pipeline.

D. Data preprocessing

The raw audio data are not directly used for model
training but preprocessed to enhance its suitability for
machine learning. First, the audio is down-sampled from
16kHz to 8 kHz, as this reduction maintains sufficient
information for model training while improving compu-
tational efficiency. The audio is then transformed into
MEFCCs. The key parameters used in the extraction of
MFCC included:

o Window size: 25 ms

o Step size: 20ms

o Number of coefficients: 13

e Number of Mel filter banks: 20

o Fast Fourier Transform (FFT) size: 256
« Window function: Hanning

This preprocessing step results in a 2D representation of
the audio signal, specifically a 13 x 50 matrix, which serves
as an image-like input for machine learning models. MFCC
data for the spoken command “zero” is illustrated in Fig. 1,
appearing as the second image in the pipeline. Samples that
do not match this size are discarded, and the percentage
of discarded samples is 0.084 %.

MFCC parameters are chosen to balance computational
efficiency and feature quality for deployment in resource-
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Fig. 1. KWS pipeline.

constrained devices [13]. The number of frames on MFCC
is calculated as seen in equation (1).

. [T—(Tw[ms]*T) Jrlw M

Ts[ms]) « T
Where:

o T is the total duration of the audio in samples.
e T, is the window size.
o T is the step size.

In KWS, distinguishing between speech, silence, and
background noise is essential for performance. The Oth
MFCC coefficient, representing audio signal energy, helps
identify when keywords are spoken [14], while the re-
maining 12 coefficients capture phonetic details necessary
for actual keyword classification. This balance of energy
detection and phonetic discrimination is particularly impor-
tant for low-power embedded devices where computational
efficiency is crucial.

For the purpose of testing, the data is split into training,
validation and testing subsets for 10-fold cross-validation.
Each iteration uses 80% of data (8 folds) for training,
10% of data (1 fold) for validation, and the remaining
10% of data (1 fold) for testing. To ensure consistency,
all utterances from the same speaker for a given command
are grouped together in the same fold. Additionally, the
testing set is further subdivided: 30 % of the testing data
is reserved for fine-tuning the models. For this fine-tuning
subset, we specifically selected instances where users had
recorded multiple utterances of the same word, ensuring
that different articulations from the same speaker were used
for fine-tuning and testing. The purpose of extracting a
subset from the testing set is to mimic a real world scenario
and estimate whether additional training on utterances from
the same speaker (but different recordings) would have a
positive or negative effect on model performance.

III. RESULTS

Three main experiments are conducted to evaluate the
performance, efficiency, and generalization capabilities of
KWS:

1) Evaluating models for memory — performance
trade-offs,

2) Fine-tuning on speaker-specific data,

3) Converting models to LiteRT with and without post-
training quantization.

A. Preparing the Models

TF is an open-source machine learning framework,
designed for building and training deep learning models.
To explore the performance and efficiency of various CNN
architectures, 10 TF models are developed and evaluated
using 10-fold cross-validation. Each model maintains the
same basic structure, with variations introduced in the
number of 2D convolutional layers, each followed by
activation functions and a max pooling layer. Larger-
capacity models incorporate dropout layer during training
to mitigate overfitting. The number of convolutional blocks
and the presence of a dropout layer in each model are
summarized in Table I, while the overall architecture used
in every model can be seen in Fig. 2.

Each model is trained for 30 epochs with early stopping
based on validation loss, ensuring strong generalization to
unseen data while preventing overfitting. The models are
evaluated based on accuracy, F1 score, and GPU energy
consumption measured using NVIDIA’s pynvml library,
which provides real-time power usage data in watts (W).
The F1 score is the harmonic mean of precision and recall,
providing a balanced measure of a model’s performance,
particularly useful when dealing with imbalanced datasets.

To investigate the impact of fine-tuning, the TF models
are further trained and compared to the original versions to
analyze differences in model size, performance, and energy
efficiency.

During the conversion process, several techniques are
applied to improve efficiency. Firstly, TF optimizes the
trained model by pruning redundant operations and fusing
compatible layers. Secondly, additional optimizations such
as operator fusion, memory reuse, and quantization are per-
formed when converting to LiteRT. These transformations
reduce computational complexity and memory usage while
maintaining model accuracy. The conversion to LiteRT
involved creating two versions for each model. The first
version retains the original floating-point (f1loat32) pre-
cision, while the second utilizes full integer quantization.
Quantization is a process that reduces the precision of
a model’s numerical representations, such as converting
from 32 bit floating-point numbers to 8 bit integers. In this
case, weights, activations, target inputs and outputs are all
represented using 8 bit integers, significantly reducing the
model’s size and computational requirements. This enables
efficient deployment on resource-constrained devices with-
out substantial losses in accuracy.



TABLE I
MODEL ARCHITECTURE

Model 1  Model 2 Model 3  Model 4 Model 5 Model 6 Model 7 Model 8 Model 9  Model 10
Conv_1 8 16 16 16 16 32 32 64 64 128
Conv_2 / 32 / 32 32 / 64 128 128 256
Conv_3 / / / / / / / / 256 512
Dense_1 32 64 64 128 128 128 128 256 512 1024
Dropout / / / 0.5 0.5 / / 0.5 0.5 0.5
Dense_2 36 36 36 36 36 36 36 36 36 36

2D convolution

Input =13 x 50 |—)| Reshape = 13 x 50 x 1 |—)

Activation function
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Fig. 2. KWS model architecture.

By creating both quantized and non-quantized LiteRT
models, we analyzed the trade-offs between performance
and memory size for microcontroller applications.

B. Fine-tuning the models

Building upon the models that were trained for memory-
performance trade-off analysis, we explore the effects of
fine-tuning on performance and energy efficiency. For this
analysis, we utilize the 100 saved models (10 folds for
each of the 10 CNN architectures) and fine-tune them
using a subset of the testing data. This subset included
speaker IDs with at least two utterances per command.
Fine-tuning is performed over 30 epochs without early
stopping, allowing the models to fully train on the new
data. Fine-tuning generally has a positive impact on model
performance and energy efficiency (Table II). Across all
models, fine-tuning results in an average improvement of
0.14 % in accuracy, a 0.63 % increase in the F1 score, and a
1.80 % decrease in energy consumption. The memory size
of fine-tuned models consistently decreases by the same
margin of 1.01 KB.

Table II summarizes the relative differences in accu-
racy, F1 score and energy consumption after fine-tuning
the models, averaged across 10 folds. Positive values
indicate improvements from fine-tuning, while negative
values show the original models performed better. Statisti-
cal significance was assessed using the Wilcoxon signed-
rank test, which evaluates consistent directional differences
across all models. An asterisk (*) accompanying any value
denotes statistically significant difference that exceeds ran-
dom variation with high confidence (p — value < 0.05).

C. Memory — performance trade-off

Our testing reveals a clear relationship between model
size and accuracy in the context of our CNN architec-
ture. As the model size increases, accuracy consistently
improves up to a certain point. However, beyond a size
of approximately 4 MB, the accuracy plateaus, achieving
just over 80%. This suggests a diminishing return on
accuracy with increasing model size, as additional param-

TABLE I
AVERAGE DIFFERENCE BETWEEN FINE-TUNED AND ORIGINAL MODEL
ACCOMPANIED BY THE WILCOXON SIGNED-RANK TEST (ASTERIX
DEMONTING IF A STATISTICALLY SIGNIFICANT DIFFERENCE EXISTS).

Accuracy (%)  F1 score (%) Energy consumption (%)

Model 1 —1.16* 1.74 12.96
Model 2 0.28 0.51 —11.17
Model 3 —1.23% 0.15 1.96
Model 4 0.63* 0.71% —3.66
Model 5 0.67* 0.84%* —1.22
Model 6 —1.30* —0.72 —-3.36
Model 7 0.75% 0.63* —0.63
Model 8 0.68* 0.73* —4.76
Model 9 1.00* 0.83%* —2.60
Model 10 1.10% 0.92% —5.53

eters beyond this threshold no longer particularly enhance
performance. This trend is illustrated by the red trend line
in Fig. 3. The first plot shows all 10 models with model size
on the x-axis and accuracy on the y-axis, while the second
focuses on models under 10 MB for better readability of
smaller architectures; in both, the trend line illustrates how
accuracy plateaus as model size increases, highlighting
diminishing returns in performance gains for larger models.

The process of converting the models to LiteRT signif-
icantly reduces their size, but it also introduces a trade-
off in terms of performance. As noted earlier, for each
TF model, two LiteRT versions are created: one without
quantization and one with full integer quantization. As
shown in Table III, the results demonstrate that converting
TF models to non-quantized LiteRT counterparts reduces
their memory size by an average of 67.13 %, while fully
integer quantized models achieve an even greater reduction
of 91.54%. This corresponds to a 74.26 % difference in
memory size between the quantized and non-quantized
LiteRT models, which closely aligns with theoretical ex-
pectations where full integer quantization typically reduces
the model size by 75 %.

The conversion process also affects model performance
metrics. For non-quantized LiteRT models, the accuracy
remains unchanged compared to the original TF models,



TABLE III
MODEL S1ZE COMPARISON ACROSS FORMATS (MB)

Model 1  Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9  Model 10
TF Model [MB] 0.49 0.97 1.82 1.84 1.84 7.13 7.91 14.51 58.50 233.38
LiteRT non-quant [MB] 0.16 0.31 0.60 0.60 0.60 2.37 2.63 4.82 19.49 77.78
LiteRT quant [MB] 0.04 0.08 0.15 0.16 0.16 0.60 0.67 1.22 4.89 19.48
5 Model Sizé vs Accuracy F1 score, and energy consumption across all 10 folds.
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Fig. 3. CNN models memory — accuracy trade-off.

as both use the same numeric precision float32. Inter-
estingly, the F1 score improved by an average of 2.10 %,
and energy consumption was reduced by an impressive
82.38 %. On the other hand, fully quantized LiteRT mod-
els, which use int8 precision, exhibited different be-
havior. Accuracy drops on average by 0.82 %, while the
F1 score improves by 1.37 %. Energy consumption shows
the most significant improvement, decreasing by 86.53 %.
This substantial reduction occurs because integer oper-
ations require considerably less computation and power
than floating-point operations. Additionally, quantization
reduces both the model’s memory size and the amount
of data that needs to be transferred between memory
and the processor. As a result, the execution of fully
quantized models on embedded hardware is substantially
more efficient. Notably, fully quantized LiteRT models
consumed 25.86 % less energy than their non-quantized
counterparts, highlighting the efficiency gains of full in-
teger quantization. The accompanying Fig. 4 provides
a visual comparison of TF models and their quantized
LiteRT counterparts, showing the distribution of accuracy,
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Fig. 4. Comparison between TF and quantized LiteRT models.

The goal of this analysis was to identify the optimal bal-
ance between accuracy, model size, and energy efficiency.
While larger models generally exhibit better accuracy and
robustness, their larger memory footprint renders them im-
practical for deployment on resource-constrained devices
such as microcontrollers. Conversely, the results show that
converting models to LiteRT significantly reduces their size
with minimal impact on performance, particularly for non-
quantized LiteRT models. Fully quantized models further
optimize memory and energy consumption, albeit with a
slight trade-off in accuracy.



IV. CONCLUSION AND FUTURE WORK

In this paper, we optimize KWS models for resource-
constrained devices by exploring trade-offs between ac-
curacy, model size and energy efficiency. Our results
demonstrate that larger models exhibit improved accuracy
but with diminishing returns beyond 4 MB where accuracy
plateaus at just over 80 %. This highlights the importance
of balancing compactness and performance for resource-
constrained device deployment.

To process audio data, we use MFCC features for
our KWS models due to their compact, domain-specific
representation of spectral characteristics, paired with CNNs
for effective structured data processing. While effective,
future work will investigate alternative spectral feature
extraction methods, including inverted mel-frequency cep-
stral coefficients (IMFCC), linear frequency cepstral coeffi-
cients (LFCC), and power-normalized cepstral coefficients
(PNCC) [15].

The conversion of TF models to LiteRT shows notable
memory reductions while maintaining acceptable perfor-
mance. Non-quantized LiteRT models retain the accuracy
of their TF counterparts while reducing energy consump-
tion by 82.38 % and memory by 67 %, while fully quan-
tized LiteRT models provide even greater efficiency gains,
with memory reductions averaging over 91 % and energy
consumption improvements of 86.53 %, albeit with a small
trade-off in performances. These results demonstrate the
potential for deploying such models on low-power devices,
emphasizing the feasibility of balancing compactness and
accuracy through careful optimization.

Based on our comprehensive evaluation, the architecture
that achieves a balanced trade-off between performance
and computational efficiency for KWS applications on
resource-constrained devices is Model 4. This model bal-
ances performance and efficiency with both original and
converted versions, maintaining accuracy and F1 scores ex-
ceeding 0.8 while keeping energy consumption low. When
converted to a fully quantized LiteRT format, it dramati-
cally reduces both memory footprint (from 1.84 MB to just
0.16 MB) and power consumption without compromising
performance.

Future work in this research involves the deployment
of the optimized KWS models on a microcontroller to
validate real-time performance. The deployment platform
is the ESP32-S3-EYE, a cost-effective device designed
for Al and IoT applications. The LiteRT models will be
converted into the C array format and embedded directly
into the firmware using the Espressif Iol' Development
Framework (ESP-IDF) and LiteRT for Microcontrollers.
This approach ensures efficient resource management and
real-time processing capabilities. Through practical testing,
we aim to validate accuracy, inference speed, and energy
efficiency, paving the way for further refinements and
broader applications. Ultimately, this research contributes
to the development of robust, efficient, and scalable tiny
machine learning solutions for resource-constrained envi-

ronments.
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