
The Benefits of Tierless Elixir/Potato for Engineering
IoT Systems

Solaris Li
Phil Trinder∗

project.ocearia@gmail.com
Phil.Trinder@glasgow.ac.uk
University of Glasgow

Glasgow, United Kingdom

Christophe De Troyer
Vrije Universiteit Brussel

Brussels, Belgium
cdetroye@soft.vub.ac.be

Mart Lubbers
Radboud University

Nijmegen, Netherlands
mart@cs.ru.nl

Adrian Ramsingh
Sia Fusion Ltd

Glasgow, United Kingdom
adrian.ramsingh@siafusion.com

Abstract
IoT systems are increasingly pervasive, and developing,
maintaining and ensuring the reliability of the software is
challenging. IoT software is conventionally structured in
multiple distributed tiers, where tiers use different program-
ming languages and components that must interoperate. One
way to minimise this complexity is to use a single tierless lan-
guage to specify the entire IoT system. Tierless IoT languages
require extremely sophisticated implementations, and are
new and rare.
A previous study compared two Clean-based tierless im-

plementations of a smart campus IoT system (CRS and CWS)
with two conventional tiered Python implementations (PRS
and PWS). It showed that tierless languages dramatically
reduce development effort.
This paper describes a new implementation of the smart

campus system in the Elixir/Potato tierless language (ERS),
and compares ERS with the other implementations to show
the following. (1) We provide further evidence that using a
tierless IoT language reduces development effort. (2) We pro-
vide the first ever comparative study of two fundamentally
different tierless IoT languages, i.e. we compare Elixir/Potato
with Clean/iTask(mTask) using the ERS and CRS/CWS case
studies. (3) We provide the first ever analysis of the soft-
ware engineering costs of providing failure management in
a tierless IoT language.

CCS Concepts: • Software and its engineering → Dis-
tributed programming languages.

Keywords: IoT, Elixir, Distributed System

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Erlang ’24, September 2, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1098-8/24/09
https://doi.org/10.1145/3677995.3678197

ACM Reference Format:
Solaris Li, Phil Trinder, Christophe De Troyer, Mart Lubbers,
and Adrian Ramsingh. 2024. The Benefits of Tierless Elixir/Potato
for Engineering IoT Systems. In Proceedings of the 23rd ACM
SIGPLAN International Workshop on Erlang (Erlang ’24), Septem-
ber 2, 2024, Milan, Italy. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3677995.3678197

1 Introduction
Conventional Internet of Things (IoT) software is complex
and poses very significant software development and re-
liability challenges. In a typical IoT system a distributed
set of sensors/actuators communicate with a server that in
turn provides information/control to a distributed set of web
clients. IoT software architectures typically compose mul-
tiple components organised in four or more tiers, with dif-
ferent programming languages and paradigms used in each
tier [16]. A tiered architecture provides modularity as tiers
can be loosely coupled, but there are significant challenges:
(1) managing the semantic friction induced by simultane-
ously developing in multiple languages and paradigms; (2)
correctly interoperating the languages & distributed compo-
nents; (3) ensuring type safety across different tiers; and (4)
handling a wide range of failures.

IoT sensor nodes may be microcontrollers like an ESP8266
based Wemos1 with very limited compute resources, or su-
persensors: resource-rich single board computers like a Rasp-
berry Pi [8]. Microcontrollers are the more demanding plat-
form due to their limited resources like a tiny memory, exe-
cuting on bare metal, etc.

BEAM languages naturally model such highly distributed
systems, and Erlang/Elixir are widely used for engineering
IoT systems [7, 10, 20]. One challenge for BEAM languages
is the substantial memory footprint of the VM, meaning
that they can only be deployed on supersensors. Projects
like AtomVM and GRiSP address this by seeking to execute
BEAM languages on microcontrollers2. Currently most Er-
lang/Elixir IoT implementations are tiered: they interoperate
multiple components, often written in other languages, e.g.
C device drivers, and HTML web content.

1https://www.wemos.cc/
2https://www.atomvm.net/ and https://www.grisp.org/

84

https://orcid.org/0000-0003-0190-7010
https://orcid.org/0000-0003-1863-6210
https://orcid.org/0000-0002-4015-4878
https://orcid.org/0000-0003-3501-902X
https://doi.org/10.1145/3677995.3678197
https://doi.org/10.1145/3677995.3678197
https://www.wemos.cc/
https://www.atomvm.net/
https://www.grisp.org/


Erlang ’24, September 2, 2024, Milan, Italy Solaris Li, Phil Trinder, Christophe De Troyer, Mart Lubbers, and Adrian Ramsingh

Tierless or multi-tier programming languages are a rad-
ical approach to reducing software development effort. In
a tierless IoT language the entire IoT system is expressed
as a single source in a single language. Hence an extremely
sophisticated language implementation is required to gener-
ate the code for, distribute, and interoperate the components
of each tier. There are mature tierless languages for some
application domains, like Links [3], and Hop [19] for web ap-
plications. In contrast tierless IoT languages are more recent
and less common. Combining the Potato library with Elixir
provides one of just three full-stack tierless IoT languages (Sec-
tion 2). Potato uses the Functional Reactive Programming
(FRP) paradigm to react to and transmit IoT events [4].

A previous study has compared conventional tiered and
tierless IoT technologies for both resource rich, and micro
controller-based, sensor nodes [12, 13]. The basis for the com-
parison was the Glasgow University Smart Campus system
(GUSC) outlined in Section 3.1. The tiered implementations
primarily use Python and are denoted Python Raspberry
Pi System (PRS), MicroPython Wemos System (PWS). The
tierless implementations use Clean/iTask on the Raspberry
Pi (CRS) and Clean/iTask/mTask on the Wemos (CWS). The
study shows that the Clean tierless implementations require
significantly lower development effort as they reduce code
size, minimise interoperation, and maintain type safety.

Here we further investigate tierless IoT languages using on
a new implementation of GUSC in Elixir/Potato (ERS) (Sec-
tion 3). We analyse the differences between the Elixir/Potato,
Python and Clean/iTask GUSC codebases. Here a key metric
is Source Lines of Code (SLOC), a flawed but widely accepted
proxy for software development and maintenance effort [17].

The paper makes three research contributions.

C1 We report a second study comparing tiered and
tierless IoT software, further evidencing that tierless
languages reduce development and maintenance effort
(Section 4). C1.a Elixir/Potato requires far less development
effort than Python: ERS uses 87% fewer (75 vs 562) lines of
code, and less than 10% (3 vs 35) of the number of source files,
than PRS. C1.b The tierless ERS developer experiences far
less semantic friction than the PRS developer: they develop
in fewer languages (3 rather than 6), and can more often use
a declarative paradigm. C1.c The major differences in ERS
and PRS code functionality are due to the idiomatic usage
of libraries in ERS (3% vs 19% for database interfacing, 28%
vs 10% for the web interface, and 32% vs 17% for communi-
cation). These results confirm the findings when comparing
the tiered PWS and PRS codebases with the tierless CWS
and CRS codebases [12].

C2 We provide the first ever comparative study of two
fundamentally different Tierless IoT languages (Sec-
tion 5). We compare Clean/iTask with Elixir/Potato using
the ERS and CRS/CWS case studies. Tierless IoT languages
are relatively new and rare, and the only previous study

compares two closely related languages: Clean/iTask and
Clean/iTask/mTask [12]. C2.a The codebases are very simi-
lar in size, with the Elixir/Potato developer writing just 16%
less code (75 vs 89 SLOC).C2.b The ERS developer must over-
come more semantic friction than the CRS/CWS developer.
Theymust use three languages rather than one, and use amix
of imperative and declarative paradigms, where CRS/CWS
are purely declarative. C2.c Using Functional Reactive Pro-
gramming (FRP) in ERS makes the greatest difference in code
functionality, requiring 6x more communication code than
CRS (32% vs 4%) where communication is largely implicit.
C2.d The Elixir/Potato and Clean/iTask implementations
generate different distributed architectures for ERS and for
CRS. For example ERS has just one database on the server,
where CRS has a data store on the server with a lens on
each sensor node. CRS has two implicit TCP communication
channels between the sensor node and the server, where ERS
has a single explicit UDP channel.
In summary, Clean/iTask(mTask) are radical tierless IoT

languages, but are niche and lack a substantial software
ecosystem. In contrast Elixir/Potato is more pragmatic: the
developer must interoperate 3 languages, but benefits from
a rich software ecosystem.

C3 We provide the first ever analysis of the software
engineering costs of providing failure management in a
tierless IoT language (Section 7). We explore four repre-
sentative failures: sensor and sensor node hardware failures,
sensor node software failure, and a UDP lost data communi-
cation failure. Three additional source files are required. The
relative increase in code size to manage the failures is unsur-
prising at 71%, although the absolute amount of defensive
code is fairly small at 53 SLOC, and much of it is boilerplate.

2 Related Work
2.1 Tiered IoT Software
Web applications are necessarily complex distributed sys-
tems, with client browsers interacting with a remote web-
server and data store. Typical IoT applications are even more
complex as they combine a web application with a second
distributed system of sensor and actuator nodes that col-
lect and aggregate data, operate on it, and communicate
with the server [16]. To manage the complexity IoT soft-
ware is traditionally organised into tiers or layers, each with
clearly defined functionality. A common classification of IoT
software tiers is illustrated in Figure 1, and comprises the
following layers.

1. The perception layer: where data is collected, or the
environment controlled, e.g. through sensors or actua-
tors.

2. The network layer: responsible for communication
between the sensor nodes and the server, often using
protocols like MQTT.

85



The Benefits of Tierless Elixir/Potato for Engineering IoT Systems Erlang ’24, September 2, 2024, Milan, Italy

Figure 1. PRS, PWS, CRS, CWS, and ERS mapped to a four-tier IoT software architecture. Every box is the diagram denotes a
source file or base. Bold blue text names the language or technology used in that source. The left-hand and middle diagrams
taken from [12].

3. The application layer: acts as the interface between the
presentation layer and the perception layer, storing
and processing the data.

4. The presentation layer: utilises web components to
interface between users and the IoT system.

Tiered architectures are adopted because they offer several
benefits. A tiered architecture is modular, comprising set of
components with clearly defined functionality that can be
implemented independently, and may be interchanged. It
provides abstraction over the functionality in each tier: how
the perception tier works is not a concern for other tiers. It
provides cohesion: all of the functionality related to a given
task is contained in that tier, e.g. presentation functionality.
However a tiered IoT architecture poses very significant

challenges for developers. The developer must interoper-
ate components in multiple languages and paradigms, i.e.
manage significant semantic friction. The developer must
correctly interoperate the components, e.g. adhere to the API
or communication protocols between components. To ensure
correctness the developer must maintain type safety across
a range of very different languages and diverse type systems.
The developer must deal with the diverse failure modes of
each component, and of component interoperations.

2.2 Tierless Languages
A radical approach to overcoming the challenges raised by
tiered distributed software is to use a tierless, or multi-tier,
programming language. Tierless languages minimise seman-
tic friction by generating the code for all tiers, and all com-
munication between tiers, from a single program. Typically,
a tierless program uses a single language, paradigm, and type
system, and the entire distributed system is simultaneously
checked by the compiler.

Tierless languages have been developed for a range of dis-
tributed paradigms, includingweb applications, client–server
applications, mobile applications, and generic distributed
systems. A recent and substantial survey of these tierless
technologies is available [24] and shows that there are estab-
lished tierless languages for web development, for example
Links [3], Clean/iTask [14] and Hop [19].
Tierless languages for IoT are both more recent and less

common than for web applications. DSLs like Copilot [9]
and Ivory [6] are embedded in a functional language and
provide high-level programming for microcontrollers, e.g.
guaranteeing strong typing and memory safety. While such
DSLs simplify the perception layer, they do not cover the
full IoT stack.
In an FRP paradigm the system reacts to discrete events:

an excellent match for IoT systems that are inherently event-
driven. Some DSLs, like Hailstorm [18] and Haski [23], use
FRP to specify the perception layer. Elixir with the Potato
library goes beyond other FRP languages to provide a full-
stack tierless FRP IoT language for resource rich sensor
nodes [4].

2.3 The Elixir/Potato Tierless IoT Language
Potato is an Elixir library that enables the tierless implemen-
tation of IoT software [4]. Elixir runs on the sophisticated
BEAM VM that provides, inter alia, concurrency and fault
tolerance. Potato is designed to reduce the accidental com-
plexity inherent to the creation of IoT systems. Potato uses
the (FRP) paradigm together with publish-subscribe commu-
nication, where every node can serve as a publisher and/or a
subscriber. Communication is via the Creek imperative DSL
that transmits data through streams, as we shall see in the
ERS implementation (Section 3).

86



Erlang ’24, September 2, 2024, Milan, Italy Solaris Li, Phil Trinder, Christophe De Troyer, Mart Lubbers, and Adrian Ramsingh

Key capabilities of Potato are methods to load new sensor
nodes with basic functionality, and to send new programs
for sensor nodes to execute, i.e. runtime deployment [22].
As Potato is built on simple high-level abstractions, there is
minimal need to write boilerplate code. It also supports the
full software lifecycle, reducing both developer and DevOps
effort.
As Potato is a library for the established Elixir language,

developers don’t need to learn a new language. Moreover
there is a rich ecosystem, with numerous libraries that sup-
port IoT functionalities. One example is the Circuits library
for interfacing to sensors3, and others are discussed below.
Likewise the ecosystem is well provided with tools to sup-
port developers and DevOps. Elixir is better known, and has
a larger user-base and ecosystem, than the Clean language
we discuss next. However, Elixir does require the memory
and compute-resource hungry BEAM VM, and hence an OS.
These requirements prevent deployment onmicrocontrollers,
restricting use to supersensors.

2.4 The Clean/iTask and Clean/iTask/mTask Tierless
IoT Languages

Clean/iTask and Clean/iTask/mTask are currently the only
other two full-stack tierless IoT languages. Clean is a stat-
ically typed functional programming language similar to
Haskell: both languages are pure and non-strict [2]. Both
iTask and mTask are DSLs embedded in Clean that adopt a
Task-Oriented Programming (TOP) model for engineering
interactive distributed systems [14]. The languages are tier-
less as from a single declarative description of tasks all of the
required software components are generated. For example
web servers, client code for browsers or IoT devices, and for
their interoperation.
In Clean/iTask and Clean/mTask persistent data is main-

tained in Shared Data Sources (SDS) that may be distributed,
and also provide parametric lenses or updatable views, on
the data [5]. An SDS lens can notify tasks when data is up-
dated. We see this in the Clean GUSC implementation where
a server task is notified when sensor data changes in the
localSDS, as shown in Figure 5(a).
The iTask DSL is intended for execution in a browser or

on an operating system, and so can only be deployed on a
supersensor. In contrast mTask is designed to be deployed
on a bare metal microcontroller equipped with the mTask
RTS/VM [11]. The GUSC codebases that we analyse in the
remainder of the paper are implemented in Clean/iTask on
a Raspberry Pi 3 (CRS) and in Clean/iTask/mTask on an
ESP8266-based Wemos microcontroller (CWS).

3https://elixir-circuits.github.io/

2.5 Failure Handling in IoT
IoT systems typically comprise many small, low-power de-
vices communicating over an unreliable network. So hard-
ware, software, and network failures are all commonplace [1].
Hence, reliability is a key aspect of almost all IoT systems,
to ensure that users can trust the system [15]. Implementing
robust software failure handling is a key element of engi-
neering a reliable IoT system, as it enables the handling of
unexpected events and preventing unintended outcomes.
Failure management in tierless IoT software is discussed

in general terms in [12]. However, we are not aware of any
specific study of the engineering costs of providing failure
management in tierless IoT software, such as we provide in
Sections 6 and 7. This is likely because tierless IoT languages
are so new.

3 ERS: A Smart Campus Case Study
3.1 Glasgow Smart Campus (GUSC) Case Study
As part of a campus upgrade the University of Glasgow
developed a prototype smart campus system to provide per-
vasive sensing infrastructure. The prototype uses modest
commodity sensor nodes (i.e. Raspberry Pis) and low-cost,
low-precision sensors for indoor environmental monitor-
ing. The current set of sensors record temperature, humidity,
sound, carbon dioxide, light and motion, and are shown in
Figure 2. PRS sensor nodes have been deployed in 12 rooms
in two buildings. PRS has an online data store, providing live
access to sensor data through a RESTful API. This allows
campus stakeholders to add functionality at a business layer
above the layers that we consider here. To date, simple apps
have been developed including room temperature monitors
and campus utilization maps [8].

The followinghigh-level functional requirementswere
specified by the GUSC project board. ERS meets these re-
quirements, and is functionally equivalent to PRS, PWS, CRS
and CWS.
1. be able to measure temperature and humidity as well as
light intensity
2. scale to no more than 10 sensors per sensor node and in-
vestigate further sensor options like measuring sound levels
3. have access to communication channels like Wi-Fi, Blue-
tooth, and even wired networks
4. have a centralised database server
5. have a client interface to access information stored in the
database
6. provide some means of security and authentication
7. have some means of managing and monitoring sensor
nodes like updating software or detecting new sensor nodes.

3.2 ERS Hardware
The main hardware components in ERS are the Raspberry Pi
sensor node, the sensors, and the server (a computer). As a

87

https://elixir-circuits.github.io/


The Benefits of Tierless Elixir/Potato for Engineering IoT Systems Erlang ’24, September 2, 2024, Milan, Italy

(a) PWS & CWS (b) PRS & CRS (c) ERS

Figure 2. Exposed views of the GUSC sensor nodes: the Wemos on the left is used in PWS and CWS; the Raspberry Pi in the
middle is used in PRS and CRS; the Raspberry Pi on the right is used in ERS

prototype the sensor node is connected to the sensors using
a breadboard. The sensor node is connected to the server
with an Ethernet cable. Figure 2 shows the hardware used in
each GUSC implementation.

3.3 ERS Software
ERS uses the Potato FRP model, and the triggering events
are when sensors send data to the sensor node. The sensor
node then sends this data to the server through a stream. The
server reacts to data it receives through the stream by upload-
ing it to a database, which triggers a reaction on the website
to update the values displayed. This chain reaction can be
visualised by traversing from right to left in the deployment
diagram in Figure 5(b).
The paragraphs below describe how each of the 4 IoT

functions are implemented in ERS. Crucially these functions
are integrated as part of a single Elixir/Potato source4.

ERS Perception. The reading from each sensor is obtained
in just a few lines of code using the Elixir Circuits hardware
libraries5.

ERS Network. When a sensor node connects to the server,
the server sets up a data stream between itself and the sensor
node as a directed acyclic graph (DAG) in the Creek library.
In the DAG the source is the sensor node and the sink is the
server [21], forming a stream. Once the sensor node has read
data from all sensors, it sends the collated sensor data to the
DAG, and the server receives it.

ERS Application. After receiving the sensor data, the
server uploads the data to a "Measurements" table in an
SQL database. This table has a field for each sensor reading
and timestamps: temperature, humidity, noise, light, motion,
CO2, time inserted, and time updated. The choice of an SQL
DBMS is arbitrary: CRS uses SQL, where PRS uses the Mon-
goDB time-series DBMS. Crucially for codebase comparison
the Elixir interfaces to SQL and to MongoDB are very similar.

4ERS Source Code: https://zenodo.org/records/10952316
5https://elixir-circuits.github.io/

ERSPresentation. The ERSweb interface uses the Phoenix
LiveView library6 that facilitates developing reactive web-
sites. LiveView can display the value of a variable such that
when the variable is updated the website also updates. Every
five seconds the ERS webserver retrieves the latest record in
the Measurements table and updates the associated variables,
updating the values displayed on the website. Figure 3 shows
the PRS, CRS and ERS websites.

(a) PRS (b) CRS (c) ERS

Figure 3. The web interfaces provided by PRS, CRS, and
ERS.

3.4 ERS Validation
Each of the sensors attached to the sensor node is confirmed
to work. The value displayed on the website before and after
changing the values of the sensor is compared. The sensor
value is changed by performing actions such as shining a
torch on the light sensor or clapping next to the sound sensor.

To enable fair comparison between the GUSC implemen-
tations, i.e. PRS, PWS, CRS, CWS and ERS, functional equiva-
lencemust bemaintained. First, all implementationsmeet the
GUSC functional requirements (Section 3.1). Second, each im-
plementation uses five identical sensors to measure the same
six values. Third, each website displays the same headings
and data (Figure 3).

6https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html

88

https://elixir-circuits.github.io/
https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html


Erlang ’24, September 2, 2024, Milan, Italy Solaris Li, Phil Trinder, Christophe De Troyer, Mart Lubbers, and Adrian Ramsingh

4 Comparing Tiered and Tierless Codebases
4.1 Memory and Power Consumption
Both maximum memory residency and power consump-
tion are important operational characteristics for IoT sensor
nodes. Here we discuss memory residency, and assume that
there is negligible difference in the power consumption of
the Raspberry Pis used by PRS, CRS and ERS, so between
1W and 2W depending on load.

Table 1. GUSC sensor node maximum memory residency
(kibibytes).

PWS PRS CWS CRS ERS
20 3558 1 2726 20,698

Table 1 compares the maximum memory residency (in
kibibytes) of the 5 GUSC implementations. ERS maximum
memory residency is measured with the built-in
“:erlang.memory()” Erlang function, and the ":etop.start()"
Elixir function identifies the top memory-consuming pro-
cesses.
The maximum memory residency of ERS (20698 KiB) is

5.8x greater than PRS (3558 KiB), which has the next great-
est residency. PRS, CRS, and ERS are all designed to run on
resource-rich sensor nodes so they all have largememory res-
idencies (> 2.7MiB). In contrast, PWS and CWS are designed
to minimise memory residency and have far smaller memory
residencies <21KiB. Most of the ERS memory is occupied by
the BEAM VM: 16221 KiB or 78%. Outside of the BEAM, the
process using the most memory is the PostgreSQL database.
This code is not needed on the sensor node, as the database
resides on the server, however in this implementation all
nodes must use the same codebase.

4.2 Comparing Tiered and Tierless IoT
Implementations

This section compares tiered and tierless IoT software by
comparing the tiered PWS and PRS with the tierless CWS,
CRS and ERS. The ERS results are new, but the PWS, PRS7,
CWS and CRS8 results are based on [12].

The original CWS and CRS interface to an SQL database to
meet the GUSC requirements, and this interface makes up a
significant portion of the codebase (78 SLOC, 47%). Idiomatic
Clean data storage uses an SDS and lenses, requiring just
12 SLOC9. To make a fair comparison between idiomatic
Clean/iTask(mTask) and Elixir/Potato we use Non SQL (NS)
versions of the Clean implementations: CWS-NS and CRS-
NS. A table including the analysis of original CWS and CRS
codebases is available https://zenodo.org/records/11236782.
7PWS/PRS Source Code: https://zenodo.org/records/5081386
8CWS/CRS Source Code: https://zenodo.org/records/5040754
9CRS-NS and CWS-NS Source Code: https://zenodo.org/records/
11142131

Code Size. is widely recognised as an approximate mea-
sure of the development and maintenance effort required
for a software system [17]. Source Lines of Code (SLOC)
is a common code size metric, and is especially useful for
multi-paradigm systems like IoT systems. It is based on the
simple principle that the more lines of code, the more devel-
oper effort and the increased likelihood of bugs [17]. It is a
simple measure, not dependent on some formula, and can
be automatically computed.
Of course SLOC must be used carefully as it is easily in-

fluenced by programming style, language paradigm, and
counting method. Here we are counting code to compare de-
velopment effort, use the same idiomatic programming style
in each component, and only count lines of code, omitting
comments and blank lines.

4.2.1 Comparing Tiered and Tierless Codebase Sizes.

Code for each Functionality. Table 2 compares the tiered
Python and tierless Clean/iTask and Elixir/Potato GUSC
codebases using SLOC, and analysing the code by function-
ality. The last row reports the number of source files.

The functionalities are as follows. Sensor Interface code
facilitates communication between the sensors and the sen-
sor node software. Sensor Node code contains all other code
on the sensor node that does not belong to any another cate-
gory, such as control flow.Manage Nodes code coordinates
sensor nodes, e.g. to add a new sensor node to the system.
Web Interface code provides the web interface from the
server, i.e. the presentation layer. Database Interface code
communicates between the server and the database(s). Com-
munication code transmits data and control between the
server and the sensor nodes, and executes on both sensor
node and server, i.e. the network layer.
ERS SLOC are measured by manually counting lines of

code and verifying against the total SLOC and number of
files reported by CLOC10. In PRS, PWS, CRS, and CWS, the
SLOC is measured using tools such as pygount11 [12].
Table 2 shows that with 75 SLOC, ERS has 87% less code

than PRS, which has 576 SLOC. There is no functionality
where ERS requires more code than PRS/PWS. These ob-
servations corroborate the findings for the Clean tierless
languages in [12].

In each of the tierless implementations the code occupies
just three source files, which is less than 10% of the files
used by the two tiered implementations: 35 or 38 files. The
difference arises as the tierless implementations mainly use
a single language, so multiple functionalities are held in a
file. In the tiered implementations, each functionality may
be written in a different languages, requiring a separate file.

Proportional Code Coverage. Figure 4 compares the per-
centage of code occupied by each functionality in the tiered
10https://github.com/AlDanial/cloc
11https://pypi.org/project/pygount/

89

https://zenodo.org/records/11236782
https://zenodo.org/records/5081386
https://zenodo.org/records/5040754
https://zenodo.org/records/11142131
https://zenodo.org/records/11142131
https://github.com/AlDanial/cloc


The Benefits of Tierless Elixir/Potato for Engineering IoT Systems Erlang ’24, September 2, 2024, Milan, Italy

Table 2. Comparing Tiered and Tierless GUSC Code Sizes analysed by functionality. PWS, PRS, CWS-NS, and CRS-NS values
based on Table 2 in [12]. Original SQL-based CWS and CRS converted to idiomatic SDS-based CWS-NS and CRS-NS. The full
table including the original CWS and CRS can be found in https://zenodo.org/records/11236782.

Tiered Python Tierless Clean Tierless Elixir
Code Location Functionality PWS PRS CWS-NS CRS-NS ERS
Sensor Node Sensor Interface 52 57 11 11 11

Sensor Node 178 183 9 4 3
Server Manage Nodes 76 35 30 14

Web Interface 56 28 21
Database Interface 106 12 2

Communication Communication 94 98 5 4 24
Total SLOC 562 576 100 89 75
No. Files 35 38 3 3 3

Figure 4. Comparing the percentage of code required to
implement each functionality in tiered/tierless and resource-
rich/constrained GUSC implementations. The full graph in-
cluding the original CWS and CRS can be found in https:
//zenodo.org/records/11236782

Python and tierless Clean and Elixir GUSC codebases. In
ERS, only 3% of the code is required for database interfacing,
making it the smallest category. Minimal code is required as
there is an Elixir library that expresses database queries as a
single function without requiring SQL. In contrast the SQL
interface in PRS occupies a larger proportion: 19%. In ERS,
the web interface accounts for 28%, and communication for
32% of the SLOC. Although these proportions higher than
in PRS/PWS (10% and 17%), the absolute amount of code is
less (21 vs 56, and 24 vs 94 SLOC).

4.2.2 Comparing Tiered and Tierless Semantic Fric-
tion. As a measure of the semantic friction that the devel-
opermanages Table 3 compares the languages and paradigms

used in PWS, PRS, CWS-NS, CRS-NS, and ERS, again anal-
ysed by functionality. The bottom rows report the total lan-
guages and paradigms, and the number of imperative and
declarative languages used. Here we use "language" to dis-
tinguish embedded DSLs from their host language: so Creek
differs from Elixir; to distinguish dialects: so MicroPython
differs from Python; and to distinguish frameworks/libraries:
so Potato differs from Elixir.

ERS uses half the number of languages used in PRS (3 vs 6).
Using multiple languages increases development effort as de-
velopers need to be fluent in more languages and paradigms,
and additional interoperation is required.
Many argue that declarative languages are preferable to

imperative languages, and both paradigms are used in ERS
and PRS/PWS. However ERS is more declarative as 4 out of
6 functionalities are implemented in a declarative language,
whereas in PRS/PWS only 2 of the 6 functionalities have
some declarative code.

5 Comparing Tierless IoT Languages
Tierless IoT languages are very new and this section com-
pares three of them using the ERS, CRS and CWS code-
bases. Crucially Elixir/Potato is fundamentally different from
Clean/iTask and Clean/iTask/mTask. While both host lan-
guages are functional they follow different paradigms: Elixir
is an impure distributed actor language, where Clean is a
pure functional language. The libraries and DSLs also use
different paradigms: Potato uses FRP while iTask and mTask
use Task-Oriented Programming.

System Architecture. The different software architec-
tures generated by Clean/iTask for CRTS and by Elixir/Potato
for ERTS are shown in the deployment diagrams in Figure 5.
CRTS/ERTS are simplified versions of CRS/ERS systems with
a single temperature&humidity sensor on a single sensor
node.

90

https://zenodo.org/records/11236782
https://zenodo.org/records/11236782
https://zenodo.org/records/11236782


Erlang ’24, September 2, 2024, Milan, Italy Solaris Li, Phil Trinder, Christophe De Troyer, Mart Lubbers, and Adrian Ramsingh

Table 3. Comparing the semantic friction by enumerating the languages and paradigms used in the GUSC implementations.

Languages Paradigms

Code Location Functionality PWS PRS CWS-NS CRS-NS ERS Python Clean Elixir

Sensor Node Sensor Int. 𝜇Python Python mTask iTask Creek imp. decl. imp.
Sensor Node 𝜇Python Python mTask iTask Creek imp. decl. imp.

Server Manage Nodes Python, JSON iTask Potato imp. decl. decl.
Web Int. HTML, PHP iTask Phoenix both decl. decl.
Database Int. Python,JSON,Redis iTask Potato both decl. decl.

Communication Communication 𝜇Python Python iTask,mTask iTask Potato imp. decl. decl.

Total 7 6 2 1 3 2 1 2

Imperative 6 2
Declarative 2 6 4

(a) CRTS

(b) ERTS

Figure 5. Deployment diagrams for CRTS and ERTS, where CRTS/ERTS are CRS/ERS with only a temperature&humidity
sensor on a single sensor node.

While necessarily similar as, for example, the code is de-
ployed across the same three physical devices, there are
some differences. Data is managed differently: ERTS has a
single SQL database on the server storing all temperature
readings. In contrast CRTS stores all temperature readings
in the tempSDS on the server. The latestTemp lens is used
to extract the latest temperature for display on the webpage.
Moreover, each sensor node has a localSDS lens to access
the data locally

The CRTS architecture induces additional implicit commu-
nication channels between the localSDS lens on each sensor

node and the tempSDS on the server. In contrast the ERTS
architecture reflects the single stream of data generated by
the Potato FRP code. The stream flows from the sensor, to the
sensor node, to the server, and to the website, i.e. leftwards
through the diagram.
A second difference is that CRTS uses TCP/IP, whereas

ERTS uses UDP, to transfer data between the server nodes
and the server. UDP is used in the Potato library to broadcast
messages to all IoT nodes, rather than using point-to-point
TCP/IP connections. Using UDP means that data may be lost
or arrive out of order. As the current GUSC implementations

91



The Benefits of Tierless Elixir/Potato for Engineering IoT Systems Erlang ’24, September 2, 2024, Milan, Italy

read the sensors every 5 seconds the effect of losing a set of
readings is negligible. The impact of lost readings would be
greater in a more realistic system that would read at longer
intervals, say every 10 minutes.

Comparing Tierless Codebase Sizes. The last 3 columns
of Table 2 compare the sizes of the ERS, CRS-NS and CWS-
NS codebases. We primarily focus on CRS-NS as it, like ERS,
is deployed on supersensors. They show that ERS has 16%
less code than CRS-NS (75 vs 89 SLOC). A major difference
between the two implementations can be seen in how man-
aging the nodes in CRS-NS requires twice as much code as
in ERS (30 vs 14 SLOC). In ERS the majority of node man-
agement is provided by the Potato library, and the developer
only needs to create and broadcast a map that contains node
identification information.

Another difference is in the database interface, where CRS-
NS uses 12 and ERS uses just 2 SLOC. CRS-NS has an SDS
and two lenses which, despite being concise, require more
code than the Phoenix Ecto library used in ERS. Phoenix
Ecto provides a single function call to read or write a record
in the database.
The three rightmost bars of Figure 4 compare the code

proportions for each functionality in the CWS-NS, CRS-NS
and ERS codebases. In ERS, the 32% of the code is used for
communication, which is 6x more than CRS-NS (4%). This is
primarily due to using the idiomatic but imperative Creek
DSL for communication between the server node and the
sensor nodes.

Comparing the Semantic Friction in the Tierless Im-
plementations. ERS uses two more languages (3) than CRS-
NS (1), as seen in the 6th and 7th columns of Table 3. The
Creek communication DSL is embedded in Potato and used
for streaming data from the sensor node to the server. It can
be argued that the streams are familiar, given their similarity
to streams in Java or Haskell. Phoenix LiveView was adopted
for the website to exploit the capability for real-time updates,
and as it turns database interactions into concise function
calls. Fortunately both Creek and Phoenix are smoothly in-
tegrated with Elixir, minimising semantic friction.
The two rightmost columns of Table 3 show that where

CRS-NS and CWS-NS only use declarative languages, the
ERS developer must use both imperative and declarative.
That is, they must use an imperative paradigm for 2 of the
6 functionalities. Needing to use both paradigms increases
semantic friction for the ERS developer.

6 Engineering a Reliable Tierless IoT
System

Reliability is a key aspect of most IoT systems, and most
provide failure handling to manage unexpected events and
prevent unintended outcomes. PRS, CRS, and ERS all provide
some elementary failure management, e.g. if a sensor or

Figure 6. ERS-FH Website showing statuses of various sys-
tems when there are no failures.

sensor node fails the application layer is notified to report
the failure.
Here we consider adding failure management for three

specific classes of IoT system failure to ERS. Specifically,
we extend ERS to ERS with Failure Handling (ERS-FH12)
that manages four representative failures. These are two
hardware failures: a sensor node hardware failure arises
if the Raspberry Pi sensor node disconnects from the server,
while a sensor failure occurs when one of the five sensors
attached to the sensor node fails. A sensor node software
failure occurs when the Elixir/Potato program on the sensor
node crashes. The network failure we consider is lost sensor
node data where sensor node data is lost during the UDP
transmission to the server.

Database and Website Extensions for Reliability. The
ERS-FH database gains a new Statuses table to store the cur-
rent status of each sensor node and its sensors. The records
in this table have five fields: one for the sensor node ID and
one for each potential failure. The ERS-FH website has a new
section showing the statuses of each of the four potential
failures, as retrieved from the Statuses table, and shown at
the bottom of Figure 6. Figure 7 shows the statuses section
of the website during two different failures - sensor node
hardware, and lost sensor node data.

12ERS with Failure Handling (ERS-FH) Source Code:
https://zenodo.org/records/10952316

92



Erlang ’24, September 2, 2024, Milan, Italy Solaris Li, Phil Trinder, Christophe De Troyer, Mart Lubbers, and Adrian Ramsingh

Table 4. Comparing GUSC code sizes with failure handling (ERS-FH) and without (ERS).

Code Location Functionality ERS ERS-FH
Sensor Node Sensor Interface 11

Sensor Node 3
Server Manage Nodes 14

Web Interface 21 32
Database Interface 2 11

Communication Communication 24
Failure Handling Sensor Node Hardware 3

Sensor Node Software 5
Sensors (5 total) 20
Lost Data 5

Total SLOC 75 128
No. Files 3 6

(a) Sensor Node Hardware (b) Lost Sensor Node Data

Figure 7. Screenshots of the ERS-FHwebsite when (a) sensor
node hardware has failed, and (b) when sensor node data
is lost. Examples of the other two failures are available in
https://zenodo.org/records/11236782.

Managing Failures in ERS-FH. When a sensor node
connects or disconnects from the network, Potato calls a
handler. To track the status of a node, a record is created
in the Statuses table when a sensor node first connects to
the network. When a connection is lost, this record is up-
dated to show the failure status, which the website reacts
to by changing the status displayed. This was validated by
powering off the sensor node (Raspberry Pi), confirming
that the website displays the correct (Not Working) status,
reconnecting the Pi and checking the website again, as seen
in Sub-figure (a) of Figure 7. Handling the other failures is
similar, and is described in https://zenodo.org/records/11219193.

7 The Costs of Failure Management in a
Tierless Language

7.1 SLOC per Functionality
Tierless IoT languages are very new, and this section provides
the first analysis of failure handling in one by investigating
the ERS-FH codebase that handles the four representative
failures outlined above. Table 4 compares the Elixir/Potato
codebase before (ERS) and after implementing failure han-
dling (ERS-FH), again using SLOC and analysing the code by
functionality. The last row reports the number of source files.
Compared to Table 2 the table introduces a new functionality
for each of the four failure types.
Implementing failure handling requires 71% extra code:

the total SLOC for ERS-FH is 128 and for ERS is 75. The
relative increase is typical of defensive code. However the
absolute amount of defensive code is fairly small at 53 SLOC,
and much of it is straightforward. Some failure handling
simply pattern matches function results checking for success
or failure. Likewise using powerful Elixir libraries in ERS-FH
minimises the code size for failure handling, as it does in
ERS.
The number of source files in the codebase increases by

three to handle failures. Adding a small number of source
files for failure handling is expected. The six source files in
ERS-FH still remains far less than in the Python codebases,
e.g. 35 in PWS. The functionalities of the addition source
files are as follows. One file detects Potato nodes entering
or leaving the network13, and sensor node hardware and
software failures. A second file detects and manages Potato
node initialisation and restart. A third file uses Elixir super-
vision to monitor and restart the Elixir/Potato sensor node
software if required.

13A Potato node is an Elixir node (VM) with a uninitialised Potato runtime.

93

https://zenodo.org/records/11236782
https://zenodo.org/records/11219193


The Benefits of Tierless Elixir/Potato for Engineering IoT Systems Erlang ’24, September 2, 2024, Milan, Italy

Figure 8. Comparing the percentage of code required to
implement each functionality with failure handling (ERS-
FH) and without (ERS).

7.2 Proportions of Failure Handling Code
Figure 8 compares the percentage of code required to imple-
ment each functionality in ERS and in ERS-FH. ERS-FH adds
a functionality to ERS for each of the four failures handled.
For failure handling, sensor failures require the most code
(16%). This is because each sensor connection and data read-
ing requires a pattern-match, typically adding four SLOC for
each of the five sensors.
In ERS-FH the percentage of code for four of the six ERS

functionalities decreases as no additional code is required.
The percentage of Web Interface remains almost unchanged
(28% vs 25%) reflecting the additional code to report failure
statuses. The Database Interface increases by 3x in ERS-FH
(from 3% to 9%) reflecting additional code to store failure
statuses.

8 Conclusion
This study is based on ERS, a new tierless Elixir/Potato imple-
mentation of the Glasgow University Smart Campus (GUSC)
system (Section 3). It provides further evidence that devel-
oping IoT systems in a tierless language reduces devel-
opment and maintenance effort (Section 4). It does so by
comparing the Elixir/Potato ERS with the Python PRS&PWS
codebases to make the following three main findings. (1)
Tierless Elixir/Potato requires far less development effort
than tiered Python: ERS used 87% fewer (75 vs 562) Source
Lines of Code (SLOC) in just 10% (3 vs 35) of the source files
(Table 2). (2) The tierless ERS developer experiences far less
semantic friction than the PRS developer: they develop in
fewer languages (3 rather than 6), and can more often use a
declarative paradigm: in 4 of 6 rather than 2 of 6 functionali-
ties (Table 3). (3) The major differences in code for specific
functionalities between ERS and PRS are due to the idiomatic
usage of powerful libraries in ERS (3% vs 19% for database
interfacing, 28% vs 10% for the web interface, and 32% vs

17% for communication) (Figure 4). These results confirm the
results comparing tierless Clean CRS and CWS with tiered
Python PRS and PWS [12].
Despite their significant benefits tierless IoT languages

come with their own challenges. These include the need to
learn new distributed programming abstractions like FRP or
task-oriented programming, and if the developer wants to
implement anything not included in the language they must
use workarounds [12]. Moreover, both Potato and mTask are
research languages, and community support is currently very
limited. A specific drawback of Elixir/Potato is high memory
residency compared to Python and Clean/iTask(/mTask). ERS
occupies 5.8x more memory (21 MB) than the next largest:
PRS (3.6 MB). So Elixir/Potato cannot be deployed on mi-
crocontrollers, and even resource-rich supersensors must be
carefully selected. This may, however be addressed in future
work.

The paper reports the first ever comparative study of
two fundamentally different Tierless IoT languages us-
ing the ERS and CRS/CWS case studies (Section 5). Elixir/Pot-
-ato is very different from Clean/iTask and Clean/iTask/mTa-
-sk: Elixir is an impure distributed actor language, where
Clean is purely functional. Moreover Potato uses FRP while
iTask and mTask use Task-Oriented Programming.

The key differences are as follows. (1) The codebases are
very similar in size, with the Elixir/Potato developer writ-
ing just 16% less code (75 vs 89 SLOC). The most significant
differences are in how nodes are managed (14 vs 30 SLOC)
and the database interfaces (2 vs 10 SLOC) (Table 2). (2) The
ERS developer must overcome more semantic friction than
the CRS/CWS developer. They must use more languages, i.e.
three, rather than the single language used in CRS/CWS.
They must also use a mix of imperative and declarative
paradigms, while CRS/CWS are purely declarative (Table 3).
(3) A major difference in code functionality is that ERS has
6x (32% vs 4%) more code for communication than CRS. This
is due to using the imperative Creek FRP communication
library (Figure 4). (4) Figure 5 illustrates the differences be-
tween the system architectures generated for ERS and CRS.
Key differences are in how data is managed: ERS has a single
database on the server where CRS/CWS has a server-side
data store, with lenses on each sensor node; and in commu-
nication between the sensor nodes and the server (one vs
two channels, and UDP vs TCP/IP).

Clean/iTask and Clean/iTask/mTask are radical tierless IoT
languages based on a single purely functional language. They
are however niche and lack a substantial software ecosystem.
Elixir/Potato provides a less radical, and more pragmatic,
approach to engineering tierless IoT software. While the
developer must interoperate 3 languages, they do so with
the support of a rich software ecosystem.
The study provides the first ever analysis of the soft-

ware engineering costs of providing failure manage-
ment in a tierless IoT language (Section 7). Managing four

94



Erlang ’24, September 2, 2024, Milan, Italy Solaris Li, Phil Trinder, Christophe De Troyer, Mart Lubbers, and Adrian Ramsingh

representative failures in ERS requires 71% additional code.
While the relative increase in code size is unsurprising, the
absolute amount of defensive code is fairly small at 53 SLOC
(128 vs 75 in total) (Table 4), and much of it is straightforward
(Figure 8). The number of source files increases from three
to six, remaining far fewer than in the Python codebases (35
and 38 files).

Future Work. GUSC is an information harvesting system
with one way data flow from the sensors via the sensor node
and server to the web clients. Future work could investigate
tierless IoT systems with control, so with information flowing
from web clients to sensor nodes/actuators, e.g. allowing
users to set a thermostat temperature from a website.
Further work could also explore an Erlang/Elixir tierless

GUSC on a microcontroller, e.g. using GRiSP14. This would
allow comparison with the PWS and CWS micro-controller-
based tiered and tierless GUSC implementations [12].

Acknowledgments
Thanks to Kristian Hentschel, Dejice Jacob and Jeremy Singer
who developed and maintain PRS, and to Pieter Koopman
who collaborated on developing CWS and CRS. This work
was funded in part by the UK EPSRC grant number
EP/T014628.

References
[1] D. Anandayuvaraj and J. C. Davis. 2022. Reflecting on Recurring

Failures in IoT Development. Proc. IEEE/ACM International Conference
on Automated Software Engineering (2022), 1–5. 10.1145/3551349.
3559545

[2] T. H. Brus, M. C. J. D. van Eekelen, M. O. van Leer, and M. J. Plasmeijer.
1987. Clean — A language for functional graph rewriting. In Functional
Programming Languages and Computer Architecture, Gilles Kahn (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 364–384. https://doi.
org/10.1007/3-540-18317-5_20

[3] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007.
Links: Web programming without tiers. Formal Methods for Compo-
nents and Objects, Springer, Berlin (2007), 266–296. https://doi.org/10.
1007/978-3-540-74792-5_12

[4] Christophe de Troyer, Jens Nicolay, and Wolfgang de Meuter. 2018.
Building IoT Systems Using Distributed First-Class Reactive Program-
ming. 2018 IEEE International Conference on Cloud Computing Technol-
ogy and Science (CloudCom) (2018), 185–192. https://doi.org/10.1109/
CloudCom2018.2018.00045

[5] László Domoszlai, Bas Lijnse, and Rinus Plasmeijer. 2014. Parametric
Lenses: Change Notification for Bidirectional Lenses. In Proc. Int. Sym-
posium on Implementation and Application of Functional Languages
(IFL ’14). ACM, New York, NY, USA. https://doi.org/10.1145/2746325.
2746333 event-place: Boston, MA, USA.

[6] Trevor Elliott et al. 2015. Guilt Free Ivory. In Proc. ACM SIGPLAN
Symposium on Haskell (Vancouver, BC, Canada) (Haskell ’15). As-
sociation for Computing Machinery, New York, NY, USA, 189–200.
https://doi.org/10.1145/2804302.2804318

[7] Geovane Fedrecheski, Laisa CP Costa, andMarcelo K Zuffo. 2016. Elixir
programming language evaluation for IoT. In 2016 IEEE International
Symposium on Consumer Electronics (ISCE). IEEE, 105–106.

14https://www.grisp.org/

[8] Kristian Hentschel, Dejice Jacob, Jeremy Singer, and Matthew
Chalmers. 2016. Supersensors: Raspberry Pi devices for smart cam-
pus infrastructure. In 2016 IEEE 4th International Conference on Fu-
ture Internet of Things and Cloud (FiCloud). IEEE, 58–62. https:
//doi.org/10.1109/FiCloud.2016.16

[9] Joey Hess. 2020. arduino-copilot: Arduino programming in Haskell
using the Copilot streamDSL. //hackage.haskell.org/package/arduino-
copilot

[10] Igor Kopestenski and Peter Van Roy. 2019. Erlang as an enabling
technology for resilient general-purpose applications on edge IoT
networks. In Proc. ACM SIGPLAN Int. Workshop on Erlang. 1–12.

[11] Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer. 2019. Interpret-
ing Task Oriented Programs on Tiny Computers. In Implementation
and Application of Functional Languages (IFL ’19). ACM, Singapore,
1–12. https://doi.org/10.1145/3412932.3412936

[12] Mart Lubbers, Pieter Koopman, Adrian Ramsingh, Jeremy Singer, and
Phil Trinder. 2023. Could Tierless Languages Reduce IoT Development
Grief. ACM Trans. Internet Things 4, 1 (February 2023) (2023), 6:1–6:35.
https://doi.org/10.1145/3572901

[13] Mart Lubbers, PieterW.M. Koopman, Adrian Ramsingh, Jeremy Singer,
and Phil Trinder. 2020. Tiered versus tierless IoT stacks: comparing
smart campus software architectures. In IoT ’20, Malmö, Sweden, Octo-
ber 6-9, 2020. ACM, 21:1–21:9. https://doi.org/10.1145/3410992.3411002

[14] Rinus Plasmeijer et al. 2012. Task-Oriented Programming in a Pure
Functional Language. In Proc. Symposium on Principles and Practice of
Declarative Programming (Leuven, Belgium) (PPDP ’12). Association
for Computing Machinery, New York, NY, USA, 195–206. https://doi.
org/10.1145/2370776.2370801

[15] D. Ratasich, F. Khalid, F. Geissler, R. Grosu, M. Shafique, and E. Bartocci.
2019. A Roadmap Toward the Resilient Internet of Things for Cyber-
Physical Systems. IEEE Access 7 (2019), 13260–13283. 10.1109/ACCESS.
2019.2891969

[16] Arvind Ravulavaru. 2018. Enterprise internet of things handbook : build
end-to-end IoT solutions using popular IoT platforms. Packt Publishing,
Birmingham, UK.

[17] J. Rosenberg. 1997. Some misconceptions about lines of code. In In-
ternational Software Metrics Symposium. 137–142. https://doi.org/10.
1109/METRIC.1997.637174

[18] Abhiroop Sarkar and Mary Sheeran. 2020. Hailstorm: A Statically-
Typed, Purely Functional Language for IoT Applications. In Proc. Prin-
ciples and Practice of Declarative Programming (Bologna, Italy) (PPDP
’20). ACM. https://doi.org/10.1145/3414080.3414092

[19] Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop: A
language for programming the web 2.0. Proc. Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA Companion’06)
ACM, Portland, Oregon, USA (2006), 975–985.

[20] Alessandro Sivieri, Luca Mottola, and Gianpaolo Cugola. 2012. Drop
the phone and talk to the physical world: Programming the internet
of things with Erlang. In Workshop on Software Engineering for Sensor
Network Applications (SESENA). IEEE, 8–14.

[21] Christophe De Troyer. 2022. A meta-level architecture for stream-based
programming languages and its applications in cyber-physical systems.
Ph. D. Dissertation. Vrije Universiteit Brussel, Belgium.

[22] Christophe De Troyer, Jens Nicolay, and Wolfgang De Meuter. 2017.
First-class reactive programs for CPS. Proc. ACM SIGPLAN Interna-
tional Workshop on Reactive and Event-Based Languages and Systems
(October 2017) (2017), 21–26.

[23] Nachiappan Valliappan et al. 2020. Towards Secure IoT Programming
in Haskell. In Proc. ACM SIGPLAN International Symposium on Haskell.
Association for Computing Machinery, New York, NY, USA, 136–150.
https://doi.org/10.1145/3406088.3409027

[24] Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. 2020. A
Survey of Multitier Programming. ACM Comput. Surv. 53, 4 (September
2020) (2020), 81:1–81:35. https://doi.org/10.1145/3397495

95

10.1145/3551349.3559545
10.1145/3551349.3559545
https://doi.org/10.1007/3-540-18317-5_20
https://doi.org/10.1007/3-540-18317-5_20
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1109/CloudCom2018.2018.00045
https://doi.org/10.1109/CloudCom2018.2018.00045
https://doi.org/10.1145/2746325.2746333
https://doi.org/10.1145/2746325.2746333
https://doi.org/10.1145/2804302.2804318
https://doi.org/10.1109/FiCloud.2016.16
https://doi.org/10.1109/FiCloud.2016.16
//hackage.haskell.org/package/arduino-copilot
//hackage.haskell.org/package/arduino-copilot
https://doi.org/10.1145/3412932.3412936
https://doi.org/10.1145/3572901
https://doi.org/10.1145/3410992.3411002
https://doi.org/10.1145/2370776.2370801
https://doi.org/10.1145/2370776.2370801
10.1109/ACCESS.2019.2891969
10.1109/ACCESS.2019.2891969
https://doi.org/10.1109/METRIC.1997.637174
https://doi.org/10.1109/METRIC.1997.637174
https://doi.org/10.1145/3414080.3414092
https://doi.org/10.1145/3406088.3409027
https://doi.org/10.1145/3397495

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tiered IoT Software
	2.2 Tierless Languages
	2.3 The Elixir/Potato Tierless IoT Language
	2.4 The Clean/iTask and Clean/iTask/mTask Tierless IoT Languages
	2.5 Failure Handling in IoT

	3 ERS: A Smart Campus Case Study
	3.1 Glasgow Smart Campus (GUSC) Case Study
	3.2 ERS Hardware
	3.3 ERS Software
	3.4 ERS Validation

	4 Comparing Tiered and Tierless Codebases
	4.1 Memory and Power Consumption
	4.2 Comparing Tiered and Tierless IoT Implementations

	5 Comparing Tierless IoT Languages
	6 Engineering a Reliable Tierless IoT System
	7 The Costs of Failure Management in a Tierless Language
	7.1 SLOC per Functionality
	7.2 Proportions of Failure Handling Code

	8 Conclusion
	Acknowledgments
	References

